COMMUNICATIONS

have been prepared in which X is alkyl,⁴ hydroxyalkyl,⁴ $Br¹$ and (by exchange with Br) OCH₃,¹ F_,⁵ N₃,⁵ and $NC⁵$

When X is a good leaving group, however, the yields of N-acylated penicillins 2 are sometimes poor because X is easily lost during reduction of the azide or hydrolysis of the Schiff base.^{1,3,4} Since electronegative 6 substituents become stabilized once the amino group is acylated, a method was sought for their introduction into the intact penicillin G benzyl ester molecule (2e).

This was achieved by the method depicted in the Scheme I. Treatment of 2e (0.25 mmol) in 5 ml of

SCHEME I

THF with PhLi (0.25 mmol) at -78° under N₂ afforded the N-lithio derivative, which was chlorinated to 5 at -78° with 351 tert-butyl hypochlorite (0.29 mmol). The by-product, lithium tert-butoxide, effected dehydrohalogenation of 5 during warming to -17° , producing N -acylimine 6, benzyl 6- $(N$ -phenylacetyl)iminopenicillanate, the key intermediate.⁶ Conjugation of the azomethine linkage with the exocyclic carbonyl was

 (6) With triethylamine as base, and (presumably) at ambient temperature, the sulfur atom is chlorinated and the thiazolidine ring opened: J. C. Sheehan in "Molecular Modification in Drug Design," American Chemical Society, Washington, D.C., 1964, p 22.

expected to confer electrophilic nature on C-6, and attack on the planar site from the less hindered α direction was anticipated.

Addition of 1 ml of methanol at -17° afforded, after chromatography on silica gel with 4:1 CHCl₃-EtOAc. 6α -methoxypenicillin G benzyl ester (2b), identical with an authentic sample³ and different from its 6 epimer. Similarly, with water there was obtained the 6α -hydroxy derivative 2a: ir (μ) 2.9, 5.63, 5.72, 5.92; nmr $(\delta, CDCl_8)$ 4.37 (s, 3-H), 5.47 (s, 5-H); mass spectrum m/e 440, 250. With triethylammonium formate the 6 α formyloxy compound 2c was obtained: ir (μ) 2.9, 5.63, $5.72, 5.92$; nmr $(\delta$, CDCl_s $)$ 4.37 (s, 3-H), 5.55 (s, 5-H); mass spectrum m/e 468, 250. Compounds 2a and 2c are assigned the 6α configuration by analogy with 2b.

Low yields of 2a, and sometimes 2c, were always obtained, no matter which reagent was added to 6; evidently the reactivity of 6 toward water is exceptionally great. Presumably 2c arises from decomposition of tert-butyl hypochlorite to acetone, which undergoes the haloform reaction to give formate ion or its equivalent. A major by-product always formed is assigned the structure 7 on the basis of its ir, nmr, and mass spectra. Another minor by-product often seen by nmr was once isolated in low yield and identified as the 6α -benzyloxy derivative 2d, identical with an authentic sample.⁷ This can only come from addition to 6 of benzyl alcohol formed by base attack on the benzyl ester.

Hydrogenolysis⁸ of 2a with an equal weight of 10% Pd/C and equimolar NaHCO₃ in 4:1 MeOH-H₂O for 1 hr at 40 psi afforded 6α -hydroxypenicillin G (1a): nmr (δ , D₂O) 1.35 (s), 1.46 (s) (gem-dimethyl), 3.65 $(s, C_6H_6CH_2CO)$, 4.23 $(s, 3-H)$, 4.67 (s, HDO) , 5.33 $(s,$ 5-H), 7.25 (s, C_6H_5); mass spectrum of Me ester (from CH_2N_2) m/e 364. In similar fashion⁸ was obtained 6α formyloxypenicillin G (1c): nmr (δ, D_2O) 4.11 (s, 3-H), 4.55 (s, HDO), 5.35 (s, 5-H); mass spectrum of Me ester m/e 392. The antimicrobial activities of 1a and 1c were markedly lower than that of 1b.

Acknowledgment.-- We are grateful to Dr. L. Cama for many helpful discussions during the course of this work.

(7) Prepared by Mr. W. J. Leanza by the method of ref 3. (8) These experiments were performed by Miss N. Schelechow.

RECEIVED JANUARY 3, 1973

Improved Routes to

Methyl 4-Methylimidazole-2-carboxylate and Methyl 5-Methyl-1,2,4-triazole-3-carboxylate¹

Summary: Triethyloxonium tetrafluoroborate and methyl fluorosulfate alkylate the sulfur atom of ethyl 2-thiooxamate. The alkylation products (2a and 2b) contain nucleophilic nitrogen atoms and good leaving

Unpublished results from these laboratories.

⁽¹⁾ Full experimental details will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036. Remit check or money order for \$3.00 for photocopy or \$2.00 for microfiche, referring to code number JOC-73-1437.

groups, and are thus useful precursors for heterocyclic carboxylates. For example, reaction of 2a with aminoacetone provided ethyl 4-methylimidazole-2-carboxylate directly, and reaction of 2a with acethydrazide gave **4** which was cyclodehydrated to ethyl 5 -methyl-1.2.4triazole-3-carboxylate.

Sir: The identification of methyl 4-methylpyrrole-2 carboxylate as a volatile component of the trail pheromone of the leaf-cutting ant, *Atta texana* (Buckley),^{2a} prompted us to examine a number of structurally related pyrroles^{2b} and similarly constituted pyrazoles, imidazoles, and triazoles.

Surprisingly, there appear to be no general methods for preparing either imidazole-2-carboxylic acid or 1,2,4 triazole-3-carboxylic acid derivatives. Ethyl 4- (or 5-) methyl-2-imidazolecarboxylate 3a has been prepared by a Radziszewski synthesis involving the condensation of cinnamaldehyde with pyruvaldehyde and ammonia, followed by barium permanganate degradation of the resulting 2-styryl-4- (or 5-) methylimidazole to the carboxylic acid 3c, and esterification of 3c to 3a with EtOH-HC1 at **l10°.3** The yields were not reported, but the Radziszewski method is known to afford complex mixtures frequently and poor yields of the
desired imidazoles.⁴ 5-Methyl-1.2.4-triazole-3-car- $5-Methyl-1,2,4-triazole-3-car$ boxylic acid was recently reported,^{5} but again the carboxyl function was generated by a permanganate oxidation, in this case by the selective oxidation of one of the methyl groups of 3,5-dimethyl-1,2,4-triazole. We here report new syntheses of 4-methylimidazole carboxylates 3a and 3b and 5-methyltriazole carboxylates Sa and 5b from a common precursor, 2.

Ethyl 2-thiooxamate **(1)6** was alkylated' with triethyloxonium tetrafluoroborate in CH₂Cl₂ to provide 2a as a pale yellow oil which we were unable to crystallize and therefore did not characterize.8 Treatment of 2a with aminoacetone hydrochloride⁹ (1 equiv) and NaOAc (2 equiv) in HOAc at 90-100° provided the imidazole carboxylate 3a in a single step (77% from 1), mp 115-116°; its nitrate had mp 125.5-126° (lit.³ mp

(2) (a) J. H. Tumlinson, J. C. Moser, R. M. Silverstein, R. G. Brownlee, and **J.** M. Ruth, Nature (London), *234,* 348 (1971); (b) P. E. Sonnet and J. C. Moser, *J. Agr. Food Chem.*, 20,1191 (1972).

(3) W. John, Chem. *Ber.,* **68B,** 2283 (1935). **(4)** K. Hofmann "Imidazole and Its Derivative," Vol. 6, in the series in "The Chemistry of Heterocyclic Compounds," **A.** Weissberger, Ed., Inter-

science Publishers, New York, N. Y., 1953, pp 33-38. *(5)* T. N. Vereshchagina and V. *8.* Lopyrev, Khim. *Geteotsikl., Soedin.,* 1695 (1970); **cf.** Chem. *Abstr., 74,* 99951y (1971).

(6) **W.** R. Boon, *J.* Chem. *Soc.,* 601 (1945). We found that the use of pyridine **as** the solvent for the addition of H2S to ethyl cyanoformate greatly facilitated the reaction and **1 was** thus obtained in essentially quantitative yield.

(7) Ethyl 9-thiooxamate **(1)** was rather resistant to alkylation and did not react with methyl iodide in refluxing acetone (15 min); with Me1 in refluxing CHsCN the color rapidly darkened, the odor of methyl mercaptan **was** evident, and no pure product **was** obtained.

(8) Except for **2a** and **2b** the structures *of* all new compounds were confirmed by analytical as well as spectral data.

(9) *070. Sun., 46,* 1 (1965).

124°). The reaction proceeded equally well in $Me₂CO$ with aqueous $Na₂CO₃$. Transesterification with with aqueous $Na₂CO₃$. NaOCH3-CHaOH gave the desired methyl ester 3b **(30%,** mp 143-145') (Scheme I).

Reaction of 2a with acethydrazide in $CH₂Cl₂$ containing Et₃N provided 4 in 77% yield (from 1), mp 196.5-197.5'. Cyclization of **4** to Sa was effected by heating 4 at 210-215° for 15 min (44% , mp 185-185.5°). Transesterification with $NaOCH₃-CH₃OH$ gave the methyl ester 5b $(48\%, \text{mp } 231^{\circ}).$

The thiooxamate **1** could also be alkylated with methyl fluorosulfate to give 2b, and 2b was converted to both 3a and **4** under conditions similar to those described for the reactions of 2a. Although the yields were slightly lower in these cases, the possibility of optimizing conditions and the ready availability of methyl fluorosulfate could make this reagent the alkylating agent of choice in some cases. Similarly, since the yields in the transesterification reactions were rather low, other esters of 2-thiooxamic acid might profitably be employed as starting materials.

Since our goal was simply the preparation of 3b and 5b, we have not further investigated the scope of these reactions, but it appears that each should be readily adaptable to the preparation of other members of each ring system wherein the methyl group could be replaced by a variety of other substituents. Furthermore, **2** should be a useful starting material for a number of other heterocyclic carboxylates.

U. S. DEPARTMENT OF AGRICULTURE, ARS JAMES E. OLIVER*
AGRICULTURAL RESEARCH CENTER PHILIP E. SONNET AGRICULTURAL RESEARCH CENTER AGRICULTURAL ENVIRONMENTAL

QUALITY INSTITUTE

BELTSVILLE, MARYLAND **20705**

RECEIVED FEBRUARY **6, 1973**